Pixhawk 2 with Jetson TX2 Build

What’s this About

I’m rebuilding The Groundhog to a more professional level, with the level of accuracy required for the AI and computer vision work planned.  It’s also getting an upgrade to the avionics to make it more resilient.  This post details the rebuild and also has links to the 3D printed parts used.

Continue reading “Pixhawk 2 with Jetson TX2 Build”

Advertisements

2. Coding UAVs with ROS. Subscribing to FCU data.

What’s this about?

In this post we will build a ROS node on a companion computer to subscribe to data being published by the flight control unit (FCU).  This will allow us to use the many data streams available from the flight controller as inputs to our system and then be able to make decisions over how the UAV should be controlled.

Continue reading “2. Coding UAVs with ROS. Subscribing to FCU data.”

Groundhog UAV curved line following

groundhogcurve
Part of a series of videos and blogs tracking the development of The Groundhog, which was entered into the MAAXX Europe 2017 competition earlier this year.
Having successfully tested the re-written code to follow straight lines using velocity vectors for control and NED space mapping for line detection, we test it around a 50m track comprising 50mm wide red webbing – and we speed it up a bit as well.

The test turned out to be quite successful, with following speeds of 1.5m/s achieved under autonomous control provided by an on-board Raspberry Pi 3.  This is significantly faster than the winning UAV in MAAXX Europe this year, which is quite pleasing!

The YouTube video shows both on-board and off-board camera footage, the former demonstrating the roaming regions of interest used by OpenCV to maintain a lock under varying lighting conditions.

Continue reading “Groundhog UAV curved line following”

Post 3. MAAXX-Europe. Image processing for line following.

wp_20170213_17_13_58_pro
PiCam 2 stabilised for roll and pitch

In this short blog series I’m outlining the hardware and software of The Groundhog, my entry into the recent MAAXX-Europe autonomous drone competition held at the University of the West of England, Bristol.

In this post I shall overview the approach taken to the image recognition system used to track the line being followed around the track.  Remember the line is red, about 50mm across and forms an oval track 20m by 6m.  We are attempting to race around as fast as we can, avoiding other UAVs if necessary.

Continue reading “Post 3. MAAXX-Europe. Image processing for line following.”

Post 2. MAAXX-Europe. The Groundhog Hardware

wp_20170213_17_13_01_pro

The Groundhog Hardware

The Groundhog was at least twice as big and probably three time as heavy as many other competitors.  Why?  Because it is built for endurance (flight time 35mins+) and also because it’s what I have as my development platform.  It normally flies outdoors of course…

Ah, so that means no gps and flying less than 30cm from the ground also rules out an optical flow camera (they can’t focus that close).  So how to control this thing?

Continue reading “Post 2. MAAXX-Europe. The Groundhog Hardware”